HPat a Decapping Activator Interacting with the miRNA Effector Complex
نویسندگان
چکیده
Animal miRNAs commonly mediate mRNA degradation and/or translational repression by binding to their target mRNAs. Key factors for miRNA-mediated mRNA degradation are the components of the miRNA effector complex (AGO1 and GW182) and the general mRNA degradation machinery (deadenylation and decapping enzymes). The CCR4-NOT1 complex required for the deadenylation of target mRNAs is directly recruited to the miRNA effector complex. However, it is unclear whether the following decapping step is only a consequence of deadenylation occurring independent of the miRNA effector complex or e.g. decapping activators can get recruited to the miRNA effector complex. In this study we performed split-affinity purifications in Drosophila cells and provide evidence for the interaction of the decapping activator HPat with the miRNA effector complex. Furthermore, in knockdown analysis of various mRNA degradation factors we demonstrate the importance of NOT1 for this interaction. This suggests that deadenylation and/or the recruitment of NOT1 protein precedes the association of HPat with the miRNA effector complex. Since HPat couples deadenylation and decapping, the recruitment of HPat to the miRNA effector complex provides a mechanism to commit the mRNA target for degradation.
منابع مشابه
HPat provides a link between deadenylation and decapping in metazoa
Decapping of eukaryotic messenger RNAs (mRNAs) occurs after they have undergone deadenylation, but how these processes are coordinated is poorly understood. In this study, we report that Drosophila melanogaster HPat (homologue of Pat1), a conserved decapping activator, interacts with additional decapping factors (e.g., Me31B, the LSm1-7 complex, and the decapping enzyme DCP2) and with component...
متن کاملmiRISC recruits decapping factors to miRNA targets to enhance their degradation
MicroRNA (miRNA)-induced silencing complexes (miRISCs) repress translation and promote degradation of miRNA targets. Target degradation occurs through the 5'-to-3' messenger RNA (mRNA) decay pathway, wherein, after shortening of the mRNA poly(A) tail, the removal of the 5' cap structure by decapping triggers irreversible decay of the mRNA body. Here, we demonstrate that miRISC enhances the asso...
متن کاملThe conserved P body component HPat/Pat1 negatively regulates synaptic terminal growth at the larval Drosophila neuromuscular junction.
The temporal and spatial regulation of protein synthesis plays an important role in the control of neural physiology. In axons and dendrites, translationally repressed mRNAs are actively transported to their destinations in a variety of ribonucleoprotein particles (RNPs). A subset of these neuronal RNPs has been shown to contain proteins associated with mRNA processing bodies (P bodies). P bodi...
متن کاملmRNA degradation by miRNAs and GW182 requires both CCR4:NOT deadenylase and DCP1:DCP2 decapping complexes.
MicroRNAs (miRNAs) silence the expression of target genes post-transcriptionally. Their function is mediated by the Argonaute proteins (AGOs), which colocalize to P-bodies with mRNA degradation enzymes. Mammalian P-bodies are also marked by the GW182 protein, which interacts with the AGOs and is required for miRNA function. We show that depletion of GW182 leads to changes in mRNA expression pro...
متن کاملHeart hormone release
Construct ing P-bodies P utting together a P-body requires both building blocks and glue. Decker et al. now show that a yeast mRNA decapping activator protein contributes to both jobs: it forms part of the building block and also helps to glue those blocks together. P-bodies are cytoplasmic granules that contain unused mRNAs with their associated proteins (complexes known as mRNPs) and mRNA dec...
متن کامل